1. Motion, forces and energy

1.1 Physical quantities and measurement techniques

Paper 3 and 4

Answer Key

Paper 3

Q1.

Question	Answer	Marks
(a)	asure the width of n loops with rule	
	n =10 or more loops	B1
	(diameter of one loop) = total width \div n <u>if n > 1</u>	B1

Q2.

Question	Answer		
(a)	average thickness =) 0.9 (cm)		
	average thickness =) 5.4 ÷ 6		
(b)	any two from: (measuring) cvlinder (partially) filled with water (initial) volume of water (in measuring cylinder) measured or recorded / noted / read mass(es) in water OR water covers all mass(es) new volume measured or recorded / noted / read	B2	
	difference between two values (of water with and without masses is determined)	B1	

Q3.

Question	Answer	Marks
(a)(i)	4.3 (cm)	A2
	5.8 (- 1.5)	C1
(a)(ii)	(a)(i) ÷ 8 correctly evaluated (0.54 (cm) if 4.3 cm used)	A2
	(a)(i) ÷ 8	(C1)

Q4.

Question	Answer	Marks
(a)	21 (cm³)	B1
(b)	0.2(0) (cm³)	
	(average volume of one drop) = $4(.0)/20$	СЗ
	(volume = 25 – 21 =) 4(.0) (cm ³)	C1
	total volume = number of drops × (average) volume of one drop	C1
(c)	any four from: measure volume of water (in a measuring cylinder) add metal to water in the measuring cylinder so that metal is completely submerged measure (new) volume of water in a measuring cylinder (with metal) find the difference between the two volumes.	B4

Q5.

Question	Answer	Marks
(a)(i)	0.3(0) (cm ³)	А3
	(average volume of one drop) = 60 ÷ 200	(C2)
	total volume = number of drops × (average) volume of one drop	(C1)
(a)(ii)	226.5 (s)	A2
	180 (+ 46.5 =)	(C1)
(a)(iii)	1.1 (s)	A2
	time for one drop = total time ÷ no of intervals	(C1)
(b)	84 (cm³)	B1

Q6.

Question	Answer	Marks
(a)	1.6 (cm) OR 14.8 (cm) seen OR used	C1
	13.2 (cm)	A1
(b)(i)	(top pan / chemical / beam) balance	B1
(b)(ii)	22 (cm³) OR 18 (cm³) seen OR used	C1
	4(.0) (cm ³)	A1
(c)	(density =) mass ÷ volume OR (d =) m ÷ v in any form	C1
	93.6 ÷ 12	C1
	7.8 (g / cm ³)	A1

Q7.

Question	Answer			
(a)(i)	(average thickness =) 3.8 ÷ 20	C1		
	(average thickness =) 0.19 (cm) (which is about 0.2 cm)			
(a)(ii)	iny one from: vire(s) not touching OR wire stretched (in places) OR ruler not at zero (owtte) OR wire(s) overlapping OR eye not lirectly above ruler (owtte)			
(b)	density = mass \div volume OR $\rho = \frac{m}{V}$ in any form.	C1		
	(ρ =) 148 ÷ 16.6	C1		
	$(\rho =) 8.9 (g/cm^3)$	A1		
(c)	measuring cylinder partially filled with water coil submerged in water (owtte) new volume noted volume of wire = difference or increase in volume(s)	B4		

Q8.

Question	Answer	Marks
(a)	(time =) 20 ÷ 50	C1
	0.4 (s)	A1
(b)(i)	measuring cylinder	B1
(b)(ii)	W=mxg	C1
	(W =) 0.21 × 10	C1
	2.1 (N)	A1

Q9.

Question	Answer	Marks
(a)	(student) S	B1
(b)	83.37 (s) seen	C1
	83.37 ÷ 50	C1
	1.67 (s) cao	A1
(c)	165 (mm)	B1

Q10.

Question	Answer	Marks
(a)	67 (cm)	C1
	(67 ÷ 5 =) 13.4 (cm)	A1
(b)	C 1st; A 2nd;	B1
	D 4th; E 5th	B1
(c)	speed = distance ÷ time in any form OR (t =) distance ÷ speed	C1
	11 ÷ 16	C1
	0.69 (s)	A1

Paper 4

Q11.

Question	Answer			Marks	
(a)	(use stop-watch to) time oscillations				
	(use of fiduciary) aid to d	etermine a complete cycle			B1
	(use of) multiple oscillation	ons AND division (to determine period)			B1
(b)		quantity	device		В3
		volume of water in a glass	measuring cylinder		
		width of a small swimming pool	metre rule		
		thickness of a piece of aluminium foil	micrometer screw gauge		
	1 mark for each correct re	esponse			

Q12.

Question	Answer	Marks
(a)	it / a vector has a direction	B1
(b)	vo / three vectors and no more than one other quantity underlined	
	acceleration and momentum and velocity underlined and no others	A1